3.10.2 \(\int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx\) [902]

3.10.2.1 Optimal result
3.10.2.2 Mathematica [A] (verified)
3.10.2.3 Rubi [A] (verified)
3.10.2.4 Maple [F]
3.10.2.5 Fricas [C] (verification not implemented)
3.10.2.6 Sympy [F]
3.10.2.7 Maxima [F]
3.10.2.8 Giac [F]
3.10.2.9 Mupad [F(-1)]

3.10.2.1 Optimal result

Integrand size = 20, antiderivative size = 130 \[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(b c+3 a d) \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{2 b^{7/4} d^{5/4}}-\frac {(b c+3 a d) \text {arctanh}\left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{2 b^{7/4} d^{5/4}} \]

output
(b*x+a)^(1/4)*(d*x+c)^(3/4)/b/d-1/2*(3*a*d+b*c)*arctan(d^(1/4)*(b*x+a)^(1/ 
4)/b^(1/4)/(d*x+c)^(1/4))/b^(7/4)/d^(5/4)-1/2*(3*a*d+b*c)*arctanh(d^(1/4)* 
(b*x+a)^(1/4)/b^(1/4)/(d*x+c)^(1/4))/b^(7/4)/d^(5/4)
 
3.10.2.2 Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.96 \[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\frac {2 b^{3/4} \sqrt [4]{d} \sqrt [4]{a+b x} (c+d x)^{3/4}-(b c+3 a d) \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )-(b c+3 a d) \text {arctanh}\left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{2 b^{7/4} d^{5/4}} \]

input
Integrate[x/((a + b*x)^(3/4)*(c + d*x)^(1/4)),x]
 
output
(2*b^(3/4)*d^(1/4)*(a + b*x)^(1/4)*(c + d*x)^(3/4) - (b*c + 3*a*d)*ArcTan[ 
(d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c + d*x)^(1/4))] - (b*c + 3*a*d)*ArcTa 
nh[(d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c + d*x)^(1/4))])/(2*b^(7/4)*d^(5/4 
))
 
3.10.2.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.22, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {90, 73, 770, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \int \frac {1}{(a+b x)^{3/4} \sqrt [4]{c+d x}}dx}{4 b d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \int \frac {1}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}d\sqrt [4]{a+b x}}{b^2 d}\)

\(\Big \downarrow \) 770

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \int \frac {1}{1-\frac {d (a+b x)}{b}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}}{b^2 d}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \left (\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}-\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}+\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}+\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}\right )}{b^2 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \left (\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}-\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}+\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}\right )}{b^2 d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{b d}-\frac {(3 a d+b c) \left (\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}+\frac {\sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}\right )}{b^2 d}\)

input
Int[x/((a + b*x)^(3/4)*(c + d*x)^(1/4)),x]
 
output
((a + b*x)^(1/4)*(c + d*x)^(3/4))/(b*d) - ((b*c + 3*a*d)*((b^(1/4)*ArcTan[ 
(d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c - (a*d)/b + (d*(a + b*x))/b)^(1/4))] 
)/(2*d^(1/4)) + (b^(1/4)*ArcTanh[(d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c - ( 
a*d)/b + (d*(a + b*x))/b)^(1/4))])/(2*d^(1/4))))/(b^2*d)
 

3.10.2.3.1 Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 
3.10.2.4 Maple [F]

\[\int \frac {x}{\left (b x +a \right )^{\frac {3}{4}} \left (d x +c \right )^{\frac {1}{4}}}d x\]

input
int(x/(b*x+a)^(3/4)/(d*x+c)^(1/4),x)
 
output
int(x/(b*x+a)^(3/4)/(d*x+c)^(1/4),x)
 
3.10.2.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 715, normalized size of antiderivative = 5.50 \[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=-\frac {b d \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}} \log \left (\frac {{\left (b c + 3 \, a d\right )} {\left (b x + a\right )}^{\frac {1}{4}} {\left (d x + c\right )}^{\frac {3}{4}} + {\left (b^{2} d^{2} x + b^{2} c d\right )} \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}}}{d x + c}\right ) - b d \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}} \log \left (\frac {{\left (b c + 3 \, a d\right )} {\left (b x + a\right )}^{\frac {1}{4}} {\left (d x + c\right )}^{\frac {3}{4}} - {\left (b^{2} d^{2} x + b^{2} c d\right )} \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}}}{d x + c}\right ) - i \, b d \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}} \log \left (\frac {{\left (b c + 3 \, a d\right )} {\left (b x + a\right )}^{\frac {1}{4}} {\left (d x + c\right )}^{\frac {3}{4}} - {\left (i \, b^{2} d^{2} x + i \, b^{2} c d\right )} \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}}}{d x + c}\right ) + i \, b d \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}} \log \left (\frac {{\left (b c + 3 \, a d\right )} {\left (b x + a\right )}^{\frac {1}{4}} {\left (d x + c\right )}^{\frac {3}{4}} - {\left (-i \, b^{2} d^{2} x - i \, b^{2} c d\right )} \left (\frac {b^{4} c^{4} + 12 \, a b^{3} c^{3} d + 54 \, a^{2} b^{2} c^{2} d^{2} + 108 \, a^{3} b c d^{3} + 81 \, a^{4} d^{4}}{b^{7} d^{5}}\right )^{\frac {1}{4}}}{d x + c}\right ) - 4 \, {\left (b x + a\right )}^{\frac {1}{4}} {\left (d x + c\right )}^{\frac {3}{4}}}{4 \, b d} \]

input
integrate(x/(b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="fricas")
 
output
-1/4*(b*d*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 108*a^3*b*c*d^ 
3 + 81*a^4*d^4)/(b^7*d^5))^(1/4)*log(((b*c + 3*a*d)*(b*x + a)^(1/4)*(d*x + 
 c)^(3/4) + (b^2*d^2*x + b^2*c*d)*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2* 
c^2*d^2 + 108*a^3*b*c*d^3 + 81*a^4*d^4)/(b^7*d^5))^(1/4))/(d*x + c)) - b*d 
*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 108*a^3*b*c*d^3 + 81*a^ 
4*d^4)/(b^7*d^5))^(1/4)*log(((b*c + 3*a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) 
 - (b^2*d^2*x + b^2*c*d)*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 
 108*a^3*b*c*d^3 + 81*a^4*d^4)/(b^7*d^5))^(1/4))/(d*x + c)) - I*b*d*((b^4* 
c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 108*a^3*b*c*d^3 + 81*a^4*d^4)/ 
(b^7*d^5))^(1/4)*log(((b*c + 3*a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) - (I*b 
^2*d^2*x + I*b^2*c*d)*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 10 
8*a^3*b*c*d^3 + 81*a^4*d^4)/(b^7*d^5))^(1/4))/(d*x + c)) + I*b*d*((b^4*c^4 
 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 108*a^3*b*c*d^3 + 81*a^4*d^4)/(b^ 
7*d^5))^(1/4)*log(((b*c + 3*a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) - (-I*b^2 
*d^2*x - I*b^2*c*d)*((b^4*c^4 + 12*a*b^3*c^3*d + 54*a^2*b^2*c^2*d^2 + 108* 
a^3*b*c*d^3 + 81*a^4*d^4)/(b^7*d^5))^(1/4))/(d*x + c)) - 4*(b*x + a)^(1/4) 
*(d*x + c)^(3/4))/(b*d)
 
3.10.2.6 Sympy [F]

\[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\int \frac {x}{\left (a + b x\right )^{\frac {3}{4}} \sqrt [4]{c + d x}}\, dx \]

input
integrate(x/(b*x+a)**(3/4)/(d*x+c)**(1/4),x)
 
output
Integral(x/((a + b*x)**(3/4)*(c + d*x)**(1/4)), x)
 
3.10.2.7 Maxima [F]

\[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\int { \frac {x}{{\left (b x + a\right )}^{\frac {3}{4}} {\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x/(b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="maxima")
 
output
integrate(x/((b*x + a)^(3/4)*(d*x + c)^(1/4)), x)
 
3.10.2.8 Giac [F]

\[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\int { \frac {x}{{\left (b x + a\right )}^{\frac {3}{4}} {\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x/(b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="giac")
 
output
integrate(x/((b*x + a)^(3/4)*(d*x + c)^(1/4)), x)
 
3.10.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{(a+b x)^{3/4} \sqrt [4]{c+d x}} \, dx=\int \frac {x}{{\left (a+b\,x\right )}^{3/4}\,{\left (c+d\,x\right )}^{1/4}} \,d x \]

input
int(x/((a + b*x)^(3/4)*(c + d*x)^(1/4)),x)
 
output
int(x/((a + b*x)^(3/4)*(c + d*x)^(1/4)), x)